Proximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances on Hadamard Manifolds
نویسندگان
چکیده
This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, applied to a class of quasiconvex problems. Finally, we give some examples of Bregman distances in non-Euclidean spaces.
منابع مشابه
Proximal Point Methods for Functions Involving Lojasiewicz, Quasiconvex and Convex Properties on Hadamard Manifolds
This paper extends the full convergence of the proximal point method with Riemannian, Semi-Bregman and Bregman distances to solve minimization problems on Hadamard manifolds. For the unconstrained problem, under the assumptions that the optimal set is nonempty and the objective function is continuous and either quasiconvex or satisfies a generalized Lojasiewicz property, we prove the full conve...
متن کاملProximal Point Method for a Class of Bregman Distances on Riemannian Manifolds
This paper generalizes the proximal point method using a class of Bregman distances to solve convex and quasiconvex optimization problems on complete Riemannian manifolds. We will prove, under standard assumptions, that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we give some examples of Bregman distances in non-Euclidean spaces.
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملProximal Methods with Bregman Distances to Solve VIP on Hadamard manifolds∗
We present an extension of the proximal point method with Bregman distances to solve Variational Inequality Problems (VIP) on Hadamard manifolds (simply connected finite dimensional Riemannian manifold with nonpositive sectional curvature). Under some natural assumption, as for example, the existence of solutions of the (VIP) and the monotonicity of the multivalued vector field, we prove that t...
متن کاملInexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds
In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006